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Abstract

In this study, a parameterization method based on NOAA-14/AVHRR data and field observations is
described and tested for deriving the regional land surface variables, vegetation variables and land sur-
face heat fluxes over a heterogeneous landscape. As a case study, the method was applied to the Tibetan
Plateau area. The regional distribution maps of surface reflectance, MSAVI, vegetation coverage, surface
temperature, net radiation, soil heat flux, sensible heat flux and latent heat flux were determined over
the Tibetan Plateau area. The derived results were validated by using the “ground truth”. The results
show that the more reasonable regional distributions and their seasonal variations of land surface vari-
ables (surface reflectance, surface temperature), vegetation variables (MSAVI and vegetation coverage),
net radiation, soil heat flux and sensible heat flux can be obtained by using the method proposed in this
study. However, the approach of deriving regional latent heat flux, and their seasonal variation as the
residual of the energy budget, may not be a good method due to the unbalance of energy and the strong
advection over the study area. Further improvement of the method was also discussed.

1. Introduction

The Tibetan Plateau, with one million km?
area and the averaged altitude of about
4000 m, plays a very important role in the
Asian monsoon circulation, and the global
climate change. The GEWEX Asian Monsoon
Experiment over the Tibetan Plateau, GAME-
Tibet, was carried out in the Tibetan Plateau,
and the intensive observation period (IOP) was
continued from May to September 1998. The
experimental region, about 100 x 200 km?, in-
cludes a variety of land surfaces such as a large
area of grassy marshland, some arid areas,
many small rivers and several lakes. At dif-
ferent landscapes, two basic comprehensive
observation stations (Anduo and NaquFx),
two Flux-PAM (Portable Automated Meso-net)
observation stations (MS3478-NPAM and
MS3637-SPAM), three automatic weather sta-
tions (D110-AWS110, Naqu and MS3608-
AWS3608), one 3D Doppler Radar, radio sonde
system, soil moisture and soil temperature net,
rain gauge net and barometer net had been op-
erated continuously for almost five months. A
large amount of surface observation data has
been collected (Fig. 1).

The study on the energy exchanges between
the land surface and atmosphere was of para-
mount importance for GAME-Tibet. Some in-
teresting detailed studies concerning the land
surface heat fluxes have been reported (Ishi-
kawa et al. 1999; Tamagawa et al. 1999; Tsu-
kamoto et al. 1999; Wang et al. 1999; Ma et al.
1999a; Ma et al. 1999¢; Yasunari 1999; Kuwa-
gata et al. 1999; Ma et al. 2000; Koike 2000;
Tanaka et al. 2001). These researches were,

however, on point-level or a local-patch-level.
Since the aerial, but not only point-wise, infor-
mation of land-surface atmosphere interaction
is required, the aggregation of the individual
results into a regional scale is necessary. Re-
mote sensing from satellites offers the possibil-
ity to derive regional distribution of land sur-
face heat fluxes.

The purpose of this study is to upscale the
point or patch scale field observations of land
surface variables, and land surface heat fluxes
to meso-scale distribution of them with the aid
of NOAA-14/AVHRR data. First describe the
methodology in section 2. The application of
the methodology to the GAME/Tibet period is
presented in section 3, where the distribution
of land surface variables, vegetation varia-
bles, and land surface heat fluxes are estimated
for three different phases, pre-monsoon, mid-
monsoon, and post-monsoon. Discussions are
also given in the section.

2. Data and methodology

2.1 Data

The NOAA-14 Advanced Very High Resolu-
tion Radiometer (AVHRR) provides spectral in-
formation in 5 bands, with a spatial resolution
of about 1 km x 1 km. Three scenes of satellite
data used in this study were collected at
14:43 h (Local Time at 92°E, LT) June 12,
1998, 13:21 h (LT) 16 July, 1998 and 13:25 h
(LT), August 21, 1998.

The most relevant field data, collected at the
GAME/Tibet surface stations, consists of radio-
sounding, vertical profiles of air temperature,
wind speed and humidity, soil heat flux, surface
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Fig. 1. The geographic map and the sites layout during IOP of the GAME/Tibet.

radiation budget components, turbulent fluxes
measured by eddy-correlation technique and
PBL tower, and the vegetation state.

2.2 Methodology

The general concept of the methodology is
shown in a diagram (Fig. 2). The surface re-
flectance for short-wave radiation (ry), and land

surface temperature (T), are retrieved from
NOAA-14/AVHRR data with the atmospheric
correction by radiative transfer model MOD-
TRAN (Berk et al. 1989) using aero-logical ob-
servation data. The radiative transfer model
also computes the downward short- and long-
wave radiation at the surface. With these re-
sults the surface net radiation (R,) is deter-
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surface and
aero-logical data)

~| [(blending height approach

Fig. 2. Diagram of parameterization pro-
cedure combining NOAA-14/AVHRR
data with field observations.

mined. The soil heat flux (Gy) is estimated from
R,, Ty, ro and MSAVI (Modified Soil Adjusted
Vegetation Index, Qi et al. 1994) which is also
derived from NOAA-14/AVHRR data. The sen-
sible heat flux (H) is estimated from T, sur-
face and aero-logical data with the aid of so
called ‘blending height’ approach (Mason 1988).

a. Net radiation
The regional net radiation flux is expressed
as

Ry(x,y) = (1 =ro(x,5)) - K| (x,5) + L (x,y)
~‘F"()(xv:)')O-T‘.?c(x:y)v (1)

where surface reflectance ro(x,y) is derived
from the channel-1 and -2 of NOAA-14/AVHRR
data with the models of Paltridge and Mith-
chell (1990) and Valiente et al. (1995). The sur-
face emissivity ¢ (x,y) is a function of vegeta-
tion coverage, and the vegetation coverage P, is
also derived from channel 1 and 2 data with the
algorithm by Valor and Caselles (1996), i.e.,

Py(x,y)

|_NDVI(x, y)
NDVI,
- [ | _NDVI(x, y)J X [ | _NDVI(x, y)} ’
NDVI, NDVI,

(2)

where K = (rg, — r1,)/(reg — rig), which ro,, rq,
and rag, rig are the minimum and maximum
reflectance value of AVHRR channel-2 and
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channel-1. NDVI; and NDVI, are the NDVI
values for bare soil and full vegetation respec-
tively.

The land surface temperature Ty (x,y) in
Eq. (1) is retrieved from the brightness tem-
perature of channels four and five of NOAA-14/
AVHRR according to Becker and Li (1990 and
1995). We first assume that the Ty is ex-
pressed as

Tsf :F(T47T5;84»£51Wa 0)’ (3)

where T4 and T5 are the brightness temper-
atures of channels 4 and 5 of AVHRR, ¢4 and ¢5
are the spectral emissivities of channel 4 and 5
respectively, W is water vapor content, which
can be derived from MODTRAN (Kneizys et al.
1996) model by using air temperature and
humidity profiles observed through the radio
sonde, and 6 represents the view angle of satel-
lite. Equation (3) was expressed by different
split window algorithms (Becker and Li 1995).
The algorithm proposed by Sobrino and Rais-
souni (2000) will be used in this study, i.e.,

Tse(x, y) = Ta(x, y) + 1.40[Ty(x, y) — T5(x, y)]
+0.28[T4(x, y) — Ts(x, y)]?
+0.83 + (57 — 5W)(1 —¢)
— (161 — 30W)Ae, (4)

where ¢=(es+65)/2, Ae=e4—¢ (Li and
Becker 1993).

The incoming short-wave radiation flux
K| (x,y) in Eq. (1) could be derived from radia-
tive transfer model MODTRAN (Kneizys et al.
1996), where atmospheric short-wave trans-
mittance 7y, is obtained by using the radio
sonde data and the surface reflectance and sur-
face temperature observed in the field. Hence
K| (x, y) can be obtained as

K, (x,y) = tswKros (%, 9), (5)

where the regional variation of radiation
flux perpendicular to the top of atmosphere
Kioa(x,y) is a spectrally integrated form of in-
band radiation flux perpendicular to the top of
atmosphere K%O 4(4), and
K! (b) cos Ogn(x
Kol ) = Kbol0) 08 Ul 2).

s

(6)

where K/ (b) is the averaged in-band solar exo-

atmospheric irradiance undisturbed by 6s,, be-
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ing zero, b is abbreviation of in-band, d; is the
earth-sun distance, 0, is sun zenith angle.
The incoming long-wave radiation flux L (x, y)
in Eq. (1) could also be calculated from MOD-
TRAN by using the radio sonde data and the
surface reflectance and surface temperature
observed in the field.

b. Soil heat flux
The regional soil heat flux Gy(x, y) is usually
determined by (Choudhury and Monteith 1988)

Go(x,y) = psCs[(Tsc(xay) - T‘)’(xvy)]/rsh(xay)a

(7)

where p, is soil dry bulk density, Cs is soil spe-
cific heat, T(x,y) stands for soil temperature
of a determined depth, ry, (x, y) represents soil
heat transportation resistance. However, the
regional soil heat flux Go(x,y) cannot directly
be mapped from satellite observations through
Equation (7) for the difficulty to determine
the soil heat transportation resistance ry, (x, y),
and the soil temperature at a reference depth
Ts(x,y). Many investigations have shown that
the mid-day Gy/R, fraction is reasonably pre-
dicted from special vegetation indices (Daugh-
try et al. 1990). Some researchers have shown
that Go/R, = T(NDVI) (Clothier et al. 1986;
Choudhury et al. 1987; Kustas and Daughtry
1990). An improved fraction of Gy/R, =
I'(ro, Tsr., NDVI) was proposed (Menenti et al.
1991; Bastiaanssen 1995). However, problems
exist in the NDVI definition equation because
of the effects of external factors, such as soil
background variations (Huete et al. 1985;
Huete 1989). In order to reduce the soil back-
ground effect in NDVI, a parameterization
based on MSAVI is proposed over the Tibetan
area in this study as

Go(x,y) = Rn(x,y) - (Tee(x, y)/ro(x, ¥))
-(a + bFg + cF2)
- [1+dMSAVI(x, y)°], (8)

where the constants a, b, ¢, d and e are de-
termined by using the field data observed at
six observation stations (AWS110, Anduo,
NPAM, Naqu, AWS3608 and SPAM) during
the GAME/Tibet I0OP; 7y is a daily mean re-
flectance value obtained from field observa-
tions. MSAVI(x, y) was derived from the band
reflectance of channel 1 and 2 of NOAA-14/
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AVHRR as (Qi et al. 1994)
MSAVI(x,y)

_ 2@y +1- \/[27‘2(96: y)+ 1 - 8lra(x, y) — r1(x, ¥)]

2
9)

c. Sensible and latent heat fluxes
The sensible heat flux H(x, y) can be derived
from

TS 4
His.y) = pCp 2 a2 qag)
where aerodynamic resistance r,(x, y) is
1
~ dolx, ~
x [m("zﬁfy’;)) +RB5,3) U (w.)],
(11)
and
u*(x7 y)

 kulx,y) {m(%a%%)) — Y, y)}l’(m)

where £ is the Von-Karman constant, u, is the
friction velocity, z is reference height, dy is
zero-plane displacement height, Z,, is the ef-
fective aerodynamic roughness, ¥,, and i, are
the stability correction function, and kB! is
the excess resistance to heat transfer, and
(Owen and Thomson 1963; Chamberlain 1968)

kB! =In (Z"’"), (13)

20n

where z(,, and zy, are aerodynamic roughness
and thermodynamic roughness, respectively.
Combining Eqs. (10), (11) and (12) yields

H(x,y) = pCpk®u(x, )
[Tw x,¥) — Ta(x, ¥)}
~htx, y)] [ )y )|
(14)
The straightforward way to model sensible
heat flux in a large area is to sum up the con-
tribution from different surface elements. If the

local scale advection is comparatively small, it
is desired that the development of a convective

X

z —do(x, y)
{1 Zom(x, )+kB
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boundary layer may smooth the local heteroge-
neity of surface disorganized variety at the
so called ‘blending height’, where atmospheric
characteristics become proximately indepen-
dent of horizontal locations. The corresponding
‘effective’ surface variables can be determined
accordingly (Mason 1988). This approach
has been proved to be successful to calculate
regional averaged surface fluxes recently
(Lhomme et al. 1994; Bastiaassen 1995; Wang
et al. 1995; Ma et al. 1999b; Ma et al. 2002b).
Based on this approach, the regional sensible
heat flux H(x, y) is expressed as

H(x,y) = pCpk®up

(Tofe (%, ) = Tair-B]

X Ly

Z—dE) Zs —dofx.y) T
02520 kb 1) - e )] - [ 2 BNy y)
(15)

where Zp is the blending height, ug and T,;,.5
are wind speed and air temperature at the
blending height respectively. Zg, ug and T, .5
are determined by using field measurements or
numerical models. In this study, these varia-
bles will be determined with the aid of field
measurements of radio sonde. Zy,,(x,y) is the
effective aerodynamic roughness length includ-
ing the effect of topography and low vegetation
(e.g., grass), and is determined by the Taylor’s
model (Taylor et al. 1989). The excess resis-
tance to heat transfer, kB!, is shown as a
function of surface temperature over the Tibe-
tan Plateau area (Ma et al. 2002a). dy is zero-
plane displacement, which can be calculated
from Raupach’s model (Raupach 1994) over
this area. Y, (x,y) and ¥, (x,y) are the in-
tegrated stability functions in equation (15).
For unstable condition, the integrated stability
functions ¥, (x,y) and ¢,,(x,y) are written as
(Paulson 1970)

2
U (x,y) = 21n<1_;X> —|—1n<1 +2X )

— 2 arctan(X) + 0.57,

hite) =2mn( 155,

(16)

where X = {1- 16« [z — do(x, y)/L(x, y)}*%
and Monin Obukhov stability length L =
—kgH/(T,u3pCp). For stable condition, the in-
tegrated stability function ¥, (x, v) and y,,(x, y)
become (Webb 1970)
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2 — dO (x> y)
L(x.y)
The stability function [z — do(x,y))/L(x,y) will

be solved by using the Businger scheme (Bu-
singer 1988), i.e.,

l//m(xvy):l//h(xvy):75 (17)

2‘:1%,%)—” —Ri(x,y) (unstable),
Z"dO(xvy) _ . . (18)
Tay = Ri(x, y)/[1 — 5.2R;(x, y)]

(stable),

where R;(x, y) is the Richardson number.

The regional latent heat flux AE(x, y) is the
residual of the energy budget theorem for land
surface, i.e.,

AE(x,y) = Rn(x,y) — H(x,y) — Go(x, y)-

3. Results and discussions

(19)

It is better to select the satellite data in clear
days to study the distribution of land surface
variables, vegetation variables and the energy
budget components. Unfortunately, it was diffi-
cult to select this kind of satellite data over the
Tibetan Plateau area for the strong convec-
tive clouds when NOAA-14/AVHRR observa-
tion took place. Only three scenes of the NOAA-
14/AVHRR could be selected during the whole
IOP. The scene of June 12, 1998 was selected as
a case of pre-monsoon and whole mesoscale
area. The scenes of July 16, 1998 and August
21, 1998 were selected as the cases of mid-
monsoon and the post-monsoon. The images
around Anduo station and NPAM station
were selected as the comparable areas because
fluxes measurements using sonic anemometer-
thermometer were undertook at these two sta-
tions. It is also very clear around these two
stations on the images of NOAA-14/AVHRR.

Figure 3 shows the distribution maps of sur-
face reflectance, surface temperature, vegeta-
tion coverage, MSAVI and surface heat fluxes
of the mesoscale experimental area. Each pixel
is 1 x 1 km? and 180 by 51 pixels are shown.
Figure 4 shows their frequency distribution of
these variables over the whole mesoscale ex-
perimental area. The distribution of land sur-
face variables and vegetation variables around
Anduo station and NPAM station were com-
pared for different phases of the monsoon in
Fig. 5. The distribution of land surface heat
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Fig. 3. The distribution maps of land surface variables, vegetation variables and land surface heat

fluxes in June 12, 1998 for the GAME/Tibet area.

fluxes around Anduo station and NPAM station
were also compared in Fig. 6. Both Fig. 5 and
Fig. 6 are based on 45 by 40 pixels with a size of
1 x 1 km?.

The land surface variables and land surface
heat fluxes derived from satellite data were
compared with the field measurements at An-
duo and NPAM sites. They are shown in Fig. 7
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and Table 1. The field observational data,
which used for validation here, was just mea-
sured at the time of satellite over passed the
area, or ten minutes averaging value around

Sensible heat flux H ( W/m®)

Latent heat flux AE( W/m® )

Fig. 4. The frequency distribution of land surface variables, vegetation variables, and land surface
heat fluxes for the GAME/Tibet area. (June 12, 1998).

that time. The mean absolute percent differ-
ence (MAPD) was computed as a quantitative
measure of the difference between the derived
results on No. i point (Hgeriveqri)), and mea-
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Fig. 5. The distribution maps of land variables and vegetation variables for the Tibetan Plateau
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Fig. 7. Comparison of the derived results with the field measurements for the surface reflectance,
surface temperature and land surface heat fluxes over the GAME/Tibet area, together with 1:1

line.

sured value on No. i point (Hpeqsured(;)) of one
scene as

100 |Hderiued(i) - Hmeasured(i) l)
MAPD = — ,
n LZ:; ( Hmeasured(i)
(20)

It is seen that: (1) the derived land surface
variables, vegetation variables and heat fluxes

for the whole meaoscale area on 12 June 1998
were in good accordance with the land surface
status. These parameters show a wide range
of variations due to the strong contrast of sur-
face features in the study area. MSAVI varies
from 0.00 to 0.30. Vegetation coverage P, varies
from 0.00 to 1.00. Surface reflectance is from
0.00 to 0.35 (some of the surface reflectance
with value large than 0.35 indicating cloud-
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Table 1. Comparison of the derived results (Cal.) versus those measured values (Meas.) at the
GAME/Tibet site with MAPD
ro(-)
June July August

Cal. Meas. | MAPD Cal. Meas. | MAPD Cal. Meas. | MAPD
Anduo 0.208 0.192 | 8.33% 0.155 0.161 3.73% 0.170 0.161 | 5.59%
NPAM 0.206 0.193 | 6.73% 0.150 0.156 3.85% 0.172 0.173 | 0.59%
Tye('C)
June July August
Cal. Meas. | MAPD Cal. Meas. | MAPD Cal. Meas. | MAPD
Anduo 38.70 39.82 | 2.81% 35.56 35.48 0.23% 27.19 26.02 | 4.50%
NPAM 4239 40.80 | 3.90% 30.40 2998 1.40% 27.57 26.85 | 2.67%

R,(W m™)
June July August
Cal. Meas. | MAPD Cal. Meas. | MAPD “al. Meas. | MAPD
Anduo | 571.04 |578.62 | 1.31% 714.95 700.11 | 2.12% 70098 | 709.57 | 1.21%
NPAM | 554.04 |593.00 | 6.57% 74999 | 74827 | 023% 71598 | 713.98 | 0.28%
Gy (W m?)
June July August

Cal.savy | Meas. | MAPD | Cal.msavy | Meas. | MAPD | Cal.oasavyy | Meas. | MAPD
Anduo 136.58 15132 | 9.74% 114.90 126.78 | 9.37% 116.00 123.76 | 6.27%
NPAM | 13539 14246 | 4.96% 105.61 112.09 | 5.78% 113.36 10511 | 7.85%
Cal.ovovy | Meas. | MAPD | Cal.owvyy | Meas. | MAPD | Cal.oovy | Meas. | MAPD

Anduo 134.72 151.32 | 10.97% 110.87 126.78 | 12.55% 112.08 123.76 | 9.44%
NPAM 131.43 142,46 | 7.74% 101.45 112.09 9.49% 116.79 105.11 | 11.11%
H(Wm?)
June July August

Cal. Meas. | MAPD Cal. Meas. MAPD Cal. Meas. | MAPD
Anduo 268.99 267.09 | 0.71% 147.01 154.76 | 5.01% 123.50 121.41 | 1.72%
NPAM 256.09 24798 | 3.27% 107.50 102.94 4.43% 116.00 112.10 | 3.48%

AE (W m™)

June July August
Cal. Meas. | MAPD Cal. Meas. | MAPD Cal. Meas. | MAPD
Anduo 165.47 101.05 | 63.75% | 453.04 193.03 | 134.70% | 46148 | 347.87 | 32.66%
NPAM | 16256 15945 | 1.95% 536.88 | 357.62 | 50.13% 486.62 | 39157 | 2427%
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covering). Surface temperature ranged from
5°C to 48°C (surface temperature of 0.0°C in-
dicating cloud-covering). Net radiation changed
from 400 to 920 W/m?. Soil heat flux varied
from 0 to 150 W/m?2. Sensible heat flux is from
0 to 320 W/m?2, and latent heat flux varies from
40 to 880 W/m?2 (see Fig. 1, Fig. 3 and Fig. 4);
(2) not only on June 12, but also on July 16 and
August 21, the derived surface reflectance, sur-
face temperature, net radiation flux, soil heat
flux and sensible heat flux were close to the
field measurements. The difference between
the derived results and the field observation
MAPD was less than 10% (see Table 2, Fig. 5,
Fig. 6, Fig. 7 and MASVI case in the Table 1);
(3) not only on June 12, but also on July 16 and
August 2, the value of the vegetation coverage
in this area was almost the same due to the
land surface in this area is covered by the same
grassy marshland in these days. The only dif-
ference was that the grass was dry on June 12
(with small MSAVI). It became green and wet
on July 16 and August 21 (with higher MSAVI)
for this area (see Fig. 5 and Fig. 6); (4) during
the experimental periods, the derived net radi-
ation flux was larger than that in the HEIFE
area (Ma et al. 1999) due to the high altitude
(the higher value of downward short-wave ra-
diation), and land surface coverage of grassy
marshland (the lower value of the upward long-
wave radiation) in this area (see Fig. 3, Fig. 5
and Fig. 6). For example, the regional average
value of net radiation flux was 470 W/m? over
the HEIFE area in 9 July, 1991 and that was
750 W/m? over the GAME/Tibet area in 16
July, 1998; (5) the values of surface reflectance,
surface temperature, soil heat flux and sensible
heat flux in June over this area were larger
than these values in July and August. Net ra-
diation flux and latent heat flux in June were
lower than their values in July and August.
The reason is that June 12 was the day before
the Asia Monsoon coming. The land surface
was dry in that day. July 16 and August 21
were within and after the Asia Monsoon. The
land surface was wet, and the grass was high
and growing (see Fig. 3, Fig. 5 and Fig. 6); (6)
problems existed in the NDVI definition equa-
tion because of the external factor effect, such
as soil background variations (Huete et al.
1985; Huete 1989). To reduce the soil back-
ground effect, Qi et al. (1994) proposed using
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MSAVI. Therefore, the parameterization
method based on MSAVI for soil heat flux is
better than that based on NDVI on heteroge-
neous land surface of the Tibetan Plateau. The
derived regional soil heat fluxes, based on
MSAVI were reasonable in different months in
this area with MAPD less than 10% (see Fig. 3,
Fig. 6, Fig. 7 and Table 1), and it was better
than the derived regional soil heat fluxes based
on NDVI (see Table 1); and, (7) all elements
of heat balance equation at NPAM site on June
12 well corresponded to the satellite data. On
the other hand, all but latent heat flux corre-
sponded to the satellite data in other seasons,
and other stations. The conclusions derived
from above facts were, (a) net radiation, sensi-
ble heat flux, and soil heat flux could be derived
from satellite, (b) in the case of NPAM on June
12, because the surface energy balanced in the
surface observation so that the latent heat flux
estimated by surface observation, well corre-
sponded to that estimated by the residual of
satellite data analysis. One dimensional energy
budget did not balance due to large errors of
the latent heat flux through the surface obser-
vation and advection in this area. The large
error of the measurement on latent heat flux
may dpend on the accuracy of the turbulence
measurement sensors (Ma et al. 1999a; Ishi-
kawa et al. 1999; Wang et al. 1999; Ma et al.
1999c; Ma et al. 2000; Tanaka et al. 2001). This
point and conclusion (a) clearly show the dis-
agreement of latent heat flux between surface
observations and satellite one.

4. Concluding remarks

In this study, distributions of land surface
variables (surface reflectance and surface tem-
perature), vegetation variables (MSAVI and
vegetation coverage P,), land surface heat
fluxes (net radiation, soil heat flux and sensi-
ble heat flux) over the heterogeneous area of
GAME/Tibet were derived by using NOAA-14/
AVHRR data and field observations. The re-
sults were in good agreement with field obser-
vations. The approach of deriving regional la-
tent heat flux, and their seasonal variation as
the residual of the energy budget, may not be a
good method due to one-dimensional energy
budget unbalance and the strong advection
over the study area when the satellite passed
over the area. Future improvements are to
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Table 2. List of symbols in this paper

Symbol Interpretation Unit
C, Air specific heat at constant pressure JkgTK!
C, Soil specific heat TkgTK
dy Zero-plane displacement m
d, Earth-Sun distance AU
E Evaporation flux Kgm?s'
Gy Soil heat tlux Wm?
H Sensible heat flux Wm?”

k Von Karman constant -
kB’ Excess resistance to heat transfer -
Ky Incoming short-wave radiation flux Wm’
K olb) Mean in-band solar exo-atmospheric irradiance Wm?
K ro4 Radiation flux perpendicular to the top of atmosphere W m?
K ro4(A) Bi-directional spectral radiance at the satellite sensor Wm?sr! ym’!
L Monin Obukhov stability length m
Ly Incoming long-wave radiation flux Wm?
MSAVI Modified soil adjusted vegetation index -
NDVI Normalized Difference Vegetation Index -
NDVI, NDVI values for bare soil -
NDVI, NDVI value for full vegetation -
ro Surface retlectance (surface albedo) -
r; Band reflectance of channel 1 of NOAA/AVHRR -
r; Band reflectance of channel 2 of NOAA/AVHRR -
Fou, Fly Minimum reflectance value of AVHRR channel-2 and channel-1 -
F2g, F1p Maximum reflectance value of AVHRR channel-2 and channel-1
Yy Aerodynamic resistance Sm’
R; Richardson number -
R, Net radiation flux Wm?
[ Soil heat transportation resistance Sm’
T, AIr temperature K
Tair-8 AIr temperature at the blending height K
T, Soil temperature K

| Ty Surface temperature K
Ty Brightness temperature of channel 4 of NOAA/AVHRR K
Ts Brightness temperature of channel 5 of NOAA/AVHRR K
& Surface emissivity .
&4 Spectral emussivity of channel 4 on NOAA/AVHRR -
& Spectral emissivity of channel 5 on NOAA/AVHRR -
u Horizontal component of wind speed ms’
ug Wind speed at the blending height ms’
Us Friction velocity ms’
W Water vapor content gm”
z Reference height m
Zo Thermodynamic roughness length m
Zom Aerodynamic roughness length m
Zom Effective aerodynamic roughness length m
zp Blending height m
g Stefan Boltzmann constant Wm’K?
2] View angle of satellite degree
O Sun zemith angle rad
A Latent heat of vaporization Tkg'
AE Latent heat flux Wm’
P Air density kem”
P Soil bulk density kgm”
Tow Atmospheric short-wave transmittance -
A Stability correction for atmospheric heat transport -
Yin Stability correction for atmospheric momentum transport -
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be made to derive more accurate regional la-
tent heat flux over such areas. The advection
0S(x,y)/0t and the errors in the procedure of
determining regional net radiation, soil heat
flux and sensible heat flux AR, (x, y), AGo(x, y)
and AH(x, y) will be considered in the equation
of surface energy balance over this area, e.g.,

AE(x,y) = Rn(%,y) + ARn(x, y)
- [H(x,y) + AH(x, y)]
= [Go(x, y) + AGo(x, y)]

— 0S(x, y)/ot. (21)

In other words, the regional latent heat flux
will be correctly derived when the advection
0S(x,y)/0t and the errors AR, (x,y), AGy(x,y)
and AH(x,y) are determined by using the suit-
able models and much better measurement
sensors.

It is also worth trying SEBI (Surface En-
ergy Balance Index, Menenti and Choudhury
1993) method, which is based on the Penmen-
Monteith equation (Monteith 1965).
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