海があるから陸があり、陸があるから海がある

【KEYWORDS】モンスーン／水循環／物質循環

安成哲三 ○名古屋大学地球水循環研究センター教授

海陸間の相互作用とモンスーン気候

何年も前から幾度かの異なる見解が出てきたが、真っ向から大気の気候の変化は、私たちは長年にわたってアジアモンスーンは、まさに海陸間の相互作用で生じている現象です。夏は陸が暖かい温度が高く、陸と海の間の温度差が気圧差を生みだして、海から陸に季節の風が吹く。この風は海からの湿った風であるため、陸には雨もたらし、雨季となる。冬は反対に陸のほうが気圧が高く、陸から海に季節の乾いた風が吹きます。北西風となって日本海を吹きわたったこの風は対馬暖流から水蒸気をたっぷりもらい、日本列島に大雪をもたらす。さらに、その風は北東風に変わりつつ、湿りながら赤道付近まで達し、東南アジアの一部やインドネシア中国大陸の東側はモンスーンアジアといわれ、アジア大陸とつながる海洋（太平洋とインド洋）があることにより、四季の変化とそれに伴う自然に恵まれています。地球の気候の研究が近年特に盛んでありますが、その一つである、大気・海洋相互作用が重要で、いわゆる海陸間相互作用というような分野はかつては科学の実証がされる傾向があります。現実の気候システムは、海も陸も大気も相互作用しているからこそ成立しているのです。相互作用の実態を、もう少し個別にみてみましょう。

水循環における海と陸の役割

地球表層面積の70%は海洋が占め、地球表層の水の体積では、海洋が約97.25%を占めています。海が地球表層の水ガメ（水源）としては圧倒的な役割をしています。しかし、私たちが食す水を含む陸上生物が必要な水は淡水です。その淡水は地表から蒸発した水蒸気が、降水量によって地表に落ちて初めて利用可能となります。図1にあるように、地球表層からの蒸発（水蒸気供給）は、地表からのものが85%以上を占めますが、その大部分はまた海に降水などで戻ってまいり、結局、海から大陸に水蒸気として運ばれるのは、そのうち8%程度です。陸上で蒸発した水（蒸気）とこの海から輸送された水蒸気が、陸上での降水中すれず、陸上で蒸発し戻った分を差し引いた量は結局、先ほど述べた蒸発量ではなく、7%程度が続く。河川水や地下水となって、私たちが利用できる淡水となります。ちなみに、先のべた海から陸に向かって吹くモンスーンは、この海からの水蒸気輸送に大きな役割をしています。モンスーン地域に生物分類や人間活動が集中しているのには、水循環からみても十分な理由があるわけです。今後の温暖化や人間活動に、この上のわがわが淡水（すなわち、水資源）をめぐって、河川をまたく国々の間では今後ますます厳しい争いを起こすことになると予想されています。

さて、膨大な水ガメである海洋にとって、陸から流れ込んでくる微細な河川水（や地下水）は、海洋上での降水や蒸散による水の出入口の数に比べたらおよそ10倍の1程度であり、海の状態、ひいては地球気候の変化には、ふつうに考えるとあまり影響はなかろうす。しかし、約1万年前、氷期が終わると、現在の温暖期（間氷期）に戻る一時期、北米大陸の氷床が融けて大量の河川水となって北大西洋に流れ込んだことが、ヤンガードライアス（Younger Dryas）期とよばれる一時的な氷期への戻りを引き起こしたことが知られています。地球の気候システムが非常に非
線形であるために、ある地域での一時的な異常な河川流量変化が、大規模な気候変化を引き起こした例といえます。

物質循環における海と陸の役割

水循環に乗るかたちで、さまざまな物質が海と陸のあいだを循環しています。そもそも海水の塩分は、地球表面に海洋が形成されて以来、長い長い年月をかけて陸から河川水を通して、Na⁺、Cl⁻、Ca²⁺、CO₃⁻など、さまざまな物質が送り込んだためと考えられています。もちろん、海洋で不溶物質は沈殿し、海洋底に堆積しますが、それはプレート運動で再び陸の地域深くへ運ばれ、火山活動を通じて陸の表面へ戻ります。地球表層の炭素循環の数千万年から数億年もの長いサイクルはこの大陸と海洋間での河川水とプレート運動が担っています。

より短い時間スケールでは、「春が消えれば海も死ぬ」（松永、1993）とか「魚が消えれば海も死ぬ」（森山、1994）と言われていますように、陸の生態系と海洋の生態系の物質循環を通じた結びつきが明らかになりつつあります。最近では、アムール川流域の森は、「魚付き林」として、オホーツク海の海洋生態系や北太平洋中層水への重要な役割を果たしていること、流域の森林水準や土地利用の変化がこの水路供給を脅かしている事実が指摘されています（例えば、中尾他（2008）。海の生物生産と生態系の維持にとって必要な物質などの物質が、森を介して水溶性の海イオンとなり、河川を通して陸相側から供給されるとされています。一方で、陸への水溶性からのダスト（アジアの場合は黄砂など）が、強い風雨で巻き上げられ、海洋に落ちることが、海の栄養素供給にも効いているという指摘もあります。

一方、海から陸への「物質」の流れとしては、河川を通じた魚類の流れが一番重要でしょう。海から山へのサケの流れはもちろんですが、河川に分布する淡水魚といえども、その進化をたどると、結局海から陸上してきた、あるいは天敵に追いやりられた海水魚が、淡水に順応していったとされています。陸上生物の祖先は、このような淡水魚がさらに海付近に追いやりられて陸上に追い上げられ、海洋に落ちたとされています。海から陸への無機物質の流れが卓越し、海から陸の有機的な物質あるいは生物そのものの物質のフローが卓越しているようです。人類は陸上生物の一員として、淡水河川には生きていけないわけですが、その中には、生存に必要な物質（食べ物）も、塩や魚油、油、塩、栄養素に代表されるように、もともと海から来たものに依存していたわけです。農業の発見と化石燃料への依存は、人類の海洋と陸に対する意識を大きく変えてしまったかもしれません。