ENSO・モンスーン結合システムと異常気象

筑波大学地球科学系 教授 安成哲三

モンスーンの雨は、稲作を中心とするモンスーンアジアの豊かな農業を保証しているが、その年々の変動は、洪水や干ばつなどのかたちで、この地域の人間活動に重大な影響を与えている。モンスーンによる降水量と水資源の予測は、モンスーンアジアの国々にとって、非常に重要な課題である。一方このアジアモンスーンの変動は、ENSO（エル・ニーニョ／南方振動）との密着な関連を通じて、地球規模での気候システムの変動に積極的な役割を果たしていることが、最近の研究で明らかにされつつある。

アジアモンスーンは、ユーラシア大陸と、まわりの海洋のあいだの季節的な加熱・冷却の差がきわめて大きいことに加え、対流圈に突き出したヒマラヤ・チベット山塊の存在、海陸の熱的コントラストをさらに強めていることにより、形成されている。

もう一つの重要な要素は海水温分布である。熱帯の西太平洋から東部インド洋地域は地球で水温が高く、暖水プールとも呼ばれている。アジア・オーストラリアのモンスーンの強い対流活動は、この暖水プールの存在とも密接に関係している。西太平洋のこの暖水プールは、モンスーンと密接に関連した赤道上の風の変動を通じた大規模な大気・海洋相互作用によりENSOを引き起こしており、モンスーンとENSOをリンクさせる重要な要素として存在している。

エル・ニーニョが発現した年には、インドモンスーンも弱く、干ばつになりやすいこと、すでに今世紀初め頃よりよく知られてきた。しかし、過去約100年間のインドモンスーンの変動とエル・ニーニョ発現の年を重ねてみると、モンスーンの弱かった年に集中し
インドモンスーン降水量と赤道西部太平洋と東部太平洋の海面水温の相関。参照したモンスーンの季節を、図中に示す。Y（0）はその該当年であり、Y（+1）はその翌年、Y（-1）はその前年を示す。

は、他の多くの最近の研究でも指摘され、現在の熱帯の気候システム研究における解明すべき大きな課題となっている。季節サイクルの中で、経年変動のある状態が、夏から冬には発展・成長していくのに対し、冬から夏への時期には衰え、いったん消滅したあとに、新しい状態が出現するという際立った季節性を持つのはなぜか。気候システムの年々変動のメカニズムで、大きな謎のひとつである。

北半球の夏から冬にかけての気候の状態には、熱帯太平洋域の大気・海洋相互作用が中心的な役割を果たしているが、冬から夏の状態とその変化には、ユーラシア大陸の大気・陸面相互作用が関与している可能性がある。例えば、中央アジアの春の積雪面積と次の夏のインドモンスーン降水量が、負の相関をもって変動していることが知られている。気候モデルによる研究からは、積雪の大きなアルベード（反射率）が春の放射収支に影響するというアルベード効果と、融雪が土壌水分量を増加させ、それが春から夏の熱収支に影響するという融雪水文学的効果が、この相関に関係した機構として指摘されている。

積雪・土壌水分がモンスーン変動に関与しているとすると、ENSO・モンスーンの関係が、もはや熱帯で閉じたシステムの変動としてのみでは不十分で、中・高緯度を含めたグローバルな気候システムの変動として理解する必要がある。私たちの研究はアジアモンスーン（夏）→熱帯の大気・海洋系（冬）→北半球中・高緯度循環（秋・冬）→ユーラシア大陸での積雪（冬・春）→アジアモンスーン（翌年の夏）という季節進行に沿った気候変動のシグナルの伝播のリンクを示している。

いずれにしろ、アジアにおける異常気象と気候変動の解明と予測には、ENSO・モンスーンの結合システムの仕組みの解明が非常に重要であり、そのためには、大気のみならず、（海水温などの）海洋の状態と大陸での（積雪・土壌水分などの）地表面状態の長期のモニタリングが非常に重要である。